
267

WebGL: 3D
 application development

Web developers have been trying for years to overcome 3D limitations to create bet-

ter interactive games, education tools, and infographics. In the past, plug-ins such

as Unity, Flash, and Quicksilver created Google Maps and online 3D explorations

programs. Plug-ins can be useful, but they leave you at the browser vendor’s mercy

for updates, usually lack hardware acceleration, and are often proprietary. To solve

these issues, the Khronos Group created a Web Graphics Library (WebGL). WebGL,

as mentioned in chapter 1, gives you the ability to create awesome 3D applications

like X-Wing, shown in figure 9.1, without plug-ins. Several developers have even

used WebGL to make drawing interfaces that create 2D images and rotate those

creations in 3D.

WARNING! You should be very familiar with Canvas and JavaScript object-
oriented programming (OOP) before working through this chapter’s sam-
ple application. If you aren’t, please go through chapter 6 on 2D Canvas
first, because the concepts we cover here build on chapter 6’s application,
mainly because WebGL builds on top of the Canvas API.

This chapter covers

■ Developing a WebGL engine

■ Communicating with a graphics card

■ Creating 3D shapes

268 CHAPTER 9 WebGL: 3D application development

You could learn basic 3D programming elsewhere, but we’ve provided it all for you—

all in one place—along with thorough explanations of 3D programming concepts,

mathematics, diagrams, and more. We even teach you how to apply your new knowl-

edge by walking you through the creation of a game: Geometry Destroyer!

In this chapter you’ll first learn how to use WebGL to create an engine from

scratch. Knowing how an engine works teaches you the fundamentals of managing

3D assets.

 After you’ve built the engine’s entity management to control visual objects, we’ll

walk you through making a request with WebGL, processing returned data, and dis-

playing the resulting 3D shapes. For the last part of the lesson, we’ll show you how to

create your game’s player and bullets with 2D shapes in 3D. We’ll then expand on the

Why build Geometry Destroyer?

Some online tutorials teach the basics of what you can do with WebGL. But this chap-

ter’s tutorial doesn’t cover creating simple demos—you’ll be creating a real application

from the ground up. A few of the subjects you’ll learn during the build include how to

■ Create a reusable WebGL class

■ Generate and maintain large numbers of WebGL entities

■ Create different shape buffers with reusable code

■ Work with assets in 2D and 3D space

■ Handle 2D collision detection in 3D space with particle generation

Figure 9.1 A simple WebGL application called X-Wing created by OutsideOfSociety. He

worked on the popular WebGL project http://ro.me.

http://ro.me

269Building a WebGL engine

2D drawing ideas to create 3D rotating polygons that explode into cubes and squares

when destroyed.

 After completing this chapter, you’ll understand how WebGL creates and manages

3D data. In addition, you’ll walk away with a reusable basic WebGL engine and a fun

game! Let’s start by rolling out the engine’s entity-management components.

9.1 Building a WebGL engine

Even though using a prebuilt engine can save a lot of time, it may cause problems if it

doesn’t support the functionality you need. We recommend rolling your own engine

for JavaScript applications when time permits. You’ll not only learn how to be a better

programmer, you’ll also create reusable code for future projects.

For example, the techniques you’ll learn building Geometry Destroyer (figure 9.2) in

this chapter will be transferable to other visual APIs such as Canvas and SVG.

WARNING: BUILDING AN ENGINE ISN’T EASY! If you don’t want to copy and paste
tons of JavaScript code to create the 3D engine, we recommend that you sim-
ply read along in sections 9.1 and 9.2 and then download the engine from
Manning’s source code. You can use that source code as your starting point
and then write the game with us in section 9.3. Feeling adventurous and want
to put your coding chops to work? Great! We invite you to build the engine
from scratch by following and using the code listings.

Need a prebuilt WebGL engine?

In a rush to get a WebGL application rolling? We recommend downloading Copper-

Licht for 3D gaming at http://www.ambiera.com/copperlicht/download.html. After

you’ve downloaded the package, you should take a look at the documentation and

demos at www.ambiera.com/copperlicht/documentation/ to get started. For any

other projects (interactive data representations, architecture, animated videos,

maps, and the like), grab a copy of Mr. Doob’s three.js from GitHub at https://

github.com/mrdoob/three.js. You’ll find examples, documents, and usage guides to

get you started at http://mng.bz/1iDu.

In this section, you’ll learn the following reusable WebGL concepts:

■ How to structure an engine that creates visual output

■ How to create simple JavaScript inheritance with John Resig’s script

■ Where to get and how to use assets that make writing WebGL faster

■ Methods for handling collisions, deletion, and other entity-management-

related tasks

http://www.ambiera.com/copperlicht/download.html
www.ambiera.com/copperlicht/documentation/
http:// mng.bz/1iDu
https://github.com/mrdoob/three.js
https://github.com/mrdoob/three.js

270 CHAPTER 9 WebGL: 3D application development

BROWSER NOTE: USE CHROME OR FIREFOX FOR THIS CHAPTER’S SAMPLE APPLICATION

Whether or not you’re building the engine with us, we recommend that you use

Google Chrome or Firefox’s latest version. Other browsers may not support advanced

3D features or the necessary graphics acceleration. Although browsers may “support”

WebGL, “support” doesn’t mean that all features have been implemented.

WebGL for IE?

Want to enable WebGL in older versions of IE? Check out a plug-in called IEWebGL

(http://iewebgl.com). It provides support for IE 6, 7, 8, 9, and 10. Because it’s a

downloaded executable, you can present it to users when they’re using IE. Keep in

mind that it doesn’t work with our demo, but it works great with libraries like Three.js

(see the site for a complete list).

WebGL 8 4 12 5.1

Figure 9.2 Get pumped to build your application by going to http://html5inaction.com/

app/ch9/ and playing Geometry Destroyer before you build it. Download the source code

from Manning’s website at http://manning.com/crowther2/.

http://iewebgl.com
http://html5inaction.com/app/ch9/
http://html5inaction.com/app/ch9/
http://manning.com/crowther2/

271Building a WebGL engine

We’ve broken the engine-building work into seven steps to help you follow along and

see the big picture:

■ Step 1: Review/create the JavaScript code base and index.html.

■ Step 2: Create style.css.

■ Step 3: Implement time-saving scripts.

■ Step 4: Create base engine logic.

■ Step 5: Manage entity storage.

■ Step 6: Create shape entities with 3D data.

■ Step 7: Add reusable methods that speed up programming and make files eas-

ier to maintain.

Let’s get started.

9.1.1 Setting up the engine’s layout

Creating a WebGL engine requires several different developer tools and a file struc-

ture like the one you see in figure 9.3.

 For now you can create an empty copy of each folder and file with the proper hierar-

chy ahead of time, or you can follow along and create each file and folder as we mention

them. The JavaScript folder (named js) will house everything for your engine. Inside the

JavaScript folder, place a run.js file and an engine folder. We’re keeping engine’s con-

tents separate from everything else to keep things neatly organized.

GRAPHICS CARD WARNING Please note that not all graphics cards will support
WebGL. If you’re running the latest version of Chrome or Firefox and can’t
run the 3D files for this chapter on your hardware, the only solution we can
think of is to try another computer. We apologize if you can’t run WebGL; the
lack of graphics card support has been frustrating for many developers.

js Index.html style.css

enginerun.js

root

assets

game.js

Engine

webgl_util.js

sylvester.js

classes.js

animation.js

core.js template.js

Figure 9.3 Your engine’s file structure should be identical to this figure. We’ve

organized it in a manner that’s conducive to learning.

http://mng.bz/h9v9
https://developer.mozilla.org/en/WebGL
https://developer.mozilla.org/en/WebGL
https://developer.mozilla.org/en/WebGL
http://ejohn.org/blog/simple-javascript-inheritance/
http://www.contextis.com/resources/blog/webgl2/
http://www.contextis.com/resources/blog/webgl2/
http://learningwebgl.com/
http://learningwebgl.com/

272 CHAPTER 9 WebGL: 3D application development

STEP 1: REVIEW/CREATE THE JAVASCRIPT CODE BASE AND INDEX.HTML

Create a file called index.html from the following listing, as a base for running all of

your JavaScript code. You’ll be including a <canvas> tag because WebGL runs on top

of the Canvas API.

<!DOCTYPE html>
<html>
<head>

 <title>Geometry Destroyer</title>
 <link rel="stylesheet" type="text/css" href="style.css" />
</head>

<body>

 <div id="container">
 <canvas id="canvas" width="800" height="600">
 Download Chrome to experience the demo!
 </canvas>

 Score: 0

 <p id="title" class="strong screen">Geometry Destroyer</p>
 <p id="start" class="screen">Push X to

Start</p>

 <p id="end" class="screen hide">
 Game Over
 </p>

 <p id="ctrls">Move: Arrow Keys | Shoot: Hold X</p>
 </div>

 <script type="text/javascript" src="js/engine/assets/sylvester.js"></
script>

 <script type="text/javascript" src="js/engine/assets/webgl_util.js"></
script>

 <script type="text/javascript" src="js/engine/assets/animation.js"></
script>

 <script type="text/javascript" src="js/engine/assets/classes.js"></
script>

 <script type="text/javascript" src="js/engine/core.js"></script>
 <script type="text/javascript" src="js/engine/game.js"></script>
 <script type="text/javascript" src="js/engine/template.js"></script>
 <script type="text/javascript" src="js/run.js"></script>
</body>

</html>

Listing 9.1 index.html—Creating the engine HTML

Can I use 2D Canvas in WebGL?

Sadly, you can’t use 2D Canvas and the WebGL API in the same context. The trick to

getting around this is to use two <canvas> elements to create two different contexts

and then sit one on top of the other via CSS.

Canvas is
required to run
WebGL. Make
sure you include
a canvas tag
when running it.

Score
counter.

Initial text
presented

to a player.

Text presented
at Game Over.

Include all
of your

engine’s
JavaScript
files here.

http://sylvester.jcoglan.com/
http://mng.bz/P7Vi
http://mng.bz/STHc
http://mng.bz/STHc

273Building a WebGL engine

STEP 2: CREATE STYLE.CSS

Because creating text in WebGL isn’t easy, you’ll use text from HTML markup. We’ve

included in the previous index.html listing an introduction and starting screen, but it

needs some styling (see figure 9.4).

 Place the next listing inside a new file called style.css. Put the file in the same

folder that contains index.html.

body {
 background: #111;
 color: #aaa;
 font-family: Impact, Helvetica, Arial;
 letter-spacing: 1px;
}

#container {
 width: 800px;
 margin: 40px auto;
 position: relative;
}

#canvas {
 border: 1px solid #333;
}

Listing 9.2 style.css—Adding styling

Figure 9.4 Result of running the index.html file with CSS and HTML only. In

the final screen, the triangular player will appear between the words Geometry

and Destroyer.

http://mng.bz/4Lao

274 CHAPTER 9 WebGL: 3D application development

#score {
 position: absolute;

 top: 5px;
 left: 8px;
 margin: 0;
 font-size: 15px;
}

.strong {
 color: #a00;
}

.screen {
 font-size: 34px;
 text-transform: uppercase;
 text-align: center;
 text-align: center;
 position: absolute;
 width: 100%;
 left: 0;
}

#title {
 top: 214px;
 font-size: 50px;
 word-spacing: 20px;
}

#start {
 top: 300px;
}

#end {
 top: 220px;
 display: none;
 font-size: 50px;
}

#ctrls {
 text-align: center;
 font-size: 18px;
}

STEP 3: IMPLEMENT TIME-SAVING SCRIPTS

Next, create a folder called js to house all of your JavaScript files. Inside create a file

called run.js that will house all of your run code. Next to run.js create a folder called

engine. Inside of engine create another folder called assets. You’ll fill up the assets

folder with four scripts that will save you time.

 Getting your engine up and running requires several different external files. You’ll

need the following:

■ Paul Irish’s requestAnimationFrame() inside animation.js

■ A slightly modified version of John Resig’s Class Extension script called classes.js

■ A transformation matrix library called sylvester.js

■ Helpers from webgl_util.js

Core API

http://blog.nihilogic.dk/2009/10/webgl-cheat-sheet.html
http://3dengine.org/Modelview_matrix
http://mng.bz/VitL

275Building a WebGL engine

We’ll explain exactly what each component does and how it aids your engine’s func-

tionality as we proceed.

PAUL IRISH’S REQUESTANIMATIONFRAME

Our goal is to equip your engine with best animation practices similar to those we dis-

cussed in chapter 6 on 2D Canvas. When we say “best animation practices,” we mean

■ Using requestAnimationFrame() instead of setInterval for mobile compatibil-

ity, to prevent updates when in another tab, and to prevent frame rate tearing

■ Testing for the requestAnimationFrame() in other browsers with Paul Irish’s

polyfill and guaranteeing support for older browsers like IE8

To start building your dependencies, or the files your engine is dependent on, navi-

gate to the assets folder. Inside create a file called animation.js using Paul Irish’s

requestAnimationFrame() shown in the following listing (http://mng.bz/h9v9).

window.requestAnimFrame = (function() {
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback) {
 window.setTimeout(callback, 1000 / 60);
 };
})();

JOHN RESIG’S SIMPLE JAVASCRIPT INHERITANCE

Because your engine requires you to create objects that can be modified, tweaked,

and inherited on the fly, you need an extendable class. The problem is that classes

usually require a robust library like prototype.js because JavaScript doesn’t natively

support them. To keep your engine’s file size and dependencies limited, we’re using a

slightly modified version of John Resig’s Simple JavaScript Inheritance script (http://

ejohn.org/blog/simple-javascript-inheritance/). Insert a modified version of John

Resig’s script from the following listing into a file called classes.js in the assets folder.

(function(){
 var initializing = false, fnTest = /xyz/.test(function(){xyz;}) ?
 /\b_super\b/ : /.*/;
 this.Class = function(){};

 Class.extend = function(prop) {
 var _super = this.prototype;

 initializing = true;
 var prototype = new this();
 initializing = false;

Listing 9.3 animation.js—Requesting animation and intervals

Listing 9.4 classes.js—JavaScript inheritance

http://ejohn.org/blog/simple-javascript-inheritance/
http:// mng.bz/h9v9
http://ejohn.org/blog/simple-javascript-inheritance/

276 CHAPTER 9 WebGL: 3D application development

 for (var name in prop) {
 prototype[name] = typeof prop[name] == "function" &&
 typeof _super[name] == "function" && fnTest.test(prop[name]) ?
 (function(name, fn){
 return function() {
 var tmp = this._super;

 this._super = _super[name];

 var ret = fn.apply(this, arguments);
 this._super = tmp;

 return ret;
 };
 })(name, prop[name]) :
 prop[name];
 }

 function Class() {}

 Class.prototype = prototype;
 Class.prototype.constructor = Class;
 Class.extend = arguments.callee;

 return Class;
 };
})();

SYLVESTER.JS

To create 3D shape objects, you also need to send the graphics card some packaged

matrix information, such as [0 1 3 0], but JavaScript doesn’t have built-in tools for

handling such information. You could write a matrix processing library for your

engine from scratch, but it’s quite a lot of work. Instead, you’ll use sylvester.js to pro-

cess everything. Get the latest version of the script from http://sylvester.jcoglan.com/,

unzip it, and include the sylvester.js file in your assets folder.

WEBGL_UTIL.JS

The last asset you need is webgl_util.js, which contains lots of prewritten code to help

with generating a perspective, processing matrixes, and more. We wish we could credit

the author of this great script, but as Mozilla says, “Nobody seems entirely clear on

where it came from.” Grab the file at http://mng.bz/P7Vi and place it in assets.

WANT MORE JAVASCRIPT?

If you want to learn more about JavaScript’s prototype-based inheritance, pick up a

copy of John Resig and Bear Bibeault’s Secrets of the JavaScript Ninja (Manning,

2012). It’s loaded with great techniques to help you work with libraries, create cross-

browser solutions, and maintain your code.

The only piece of code we
changed from the original
inheritance script was
removing a call to init() here.
Originally, the script would
automatically call init() if it
were present on an object.

http://sylvester.jcoglan.com/
http:// mng.bz/P7Vi

277Building a WebGL engine

9.1.2 Tools to create, alter, and delete objects

With your assets in place, let’s get to work on the engine.

STEP 4: CREATE BASE ENGINE LOGIC

Use the following listing to create your first engine file, core.js, inside js/engine. With

this listing, you are detecting WebGL support, setting up the base configuration for

WebGL, creating a helper method to detect collisions, and creating placeholders for

code in later listings.

var gd = gd || {};

gd.core = {
 canvas: document.getElementById("canvas"),

 size: function(width, height) {
 this.horizAspect = width / height;
 },

 init: function(width, height, run) {
 this.size(width, height);

 if (!this.canvas.getContext) return alert('Please download ' +
 'a browser that supports Canvas like Google Chrome ' +
 'to proceed.');
 gd.gl = this.canvas.getContext("experimental-webgl");

 if (gd.gl === null || gd.gl === undefined)
 return alert('Uhhh, your browser doesn\'t support WebGL. ' +
 'Your options are build a large wooden badger ' +
 'or download Google Chrome.');

 gd.gl.clearColor(0.05, 0.05, 0.05, 1.0);
 gd.gl.enable(gd.gl.DEPTH_TEST);
 gd.gl.depthFunc(gd.gl.LEQUAL);
 gd.gl.clear(gd.gl.COLOR_BUFFER_BIT | gd.gl.DEPTH_BUFFER_BIT);

 this.shader.init();
 this.animate();

 window.onload = run;
 },

 animate: function() {
 requestAnimFrame(gd.core.animate);

Wait—didn’t you say “custom rolled engine”?

Earlier we said that our WebGL tutorial centers on a built-from-scratch engine, which

may lead you to ask, “Why are you making me use assets that aren’t from scratch?”

Truth is, we don’t have time to custom roll everything; it would take at least 100 more

pages to explain a complete engine step by step, so we thought that adding a few

scripts to simplify everything was a good idea. We hope you agree!

Listing 9.5 core.js—Engine startup

Core API

Inherits a previously existing gd variable or creates a
new one. Great for accessing gd across multiple files.

WebGL requires you to set an
aspect ratio; failure to do so
will distort the correct aspect
ratio of your canvas.

Manually
check for

WebGL
support;

some
browsers

return null
and some

undefined if
getContext()

fails.

Sets a clear color of slightly
off-black for WebGL.These two

lines of code
set up depth
perception.

Fires the run code
argument after everything
has been set up.

278 CHAPTER 9 WebGL: 3D application development

 gd.core.draw();
 },

 shader: {
 init: function() {},
 get: function(id) {},
 store: function() {}
 },

 draw: function() {},

 overlap: function(
 x1, y1, width1, height1,
 x2, y2, width2, height2) {
 x1 = x1 - (width1 / 2);
 y1 = y1 - (height1 / 2);
 x2 = x2 - (width2 / 2);
 y2 = y2 - (height2 / 2);

 return x1 < x2 + width2 &&
 x1 + width1 > x2 &&
 y1 < y2 + width2 &&
 y1 + height1 > y2;
 }
};

STEP 5: MANAGE ENTITY STORAGE

Now you need to manage entity storage and create a graveyard to handle cleaning out

deleted entities. Add the following listing to complete core.js’s entity management

inside your existing gd.core object. These methods make maintaining entities signifi-

cantly easier when you program the run.js file later.

gd.core = {
 id: {
 count: 0,
 get: function() {
 return this.count++;
 }
 },

 storage: {
 all: [],
 a: [],
 b: []
 },

 graveyard: {
 storage: [],
 purge: function() {
 if (this.storage) {
 for (var obj = this.storage.length; obj--;) {
 this.remove(this.storage[obj]);
 }
 this.graveyard = [];

Listing 9.6 core.js—Engine entity management

Shaders will be covered later;
this is a placeholder for now.

Drawing will be covered
during graphic creation; this
is currently a placeholder.

The gd.core.overlap() method is for
detecting overlap between two squares.

WebGL objects are drawn from the center,
and you need to calculate from the top left.
You need to adjust the width and height
calculations to account for that.

Gives new entities a unique ID identifier.
Speeds up searching for and deleting objects.

Storage container for holding all the
objects you generate. The A and B
containers are used to cut down on
collision-detection comparisons by
placing friendlies in A, enemies in B.

Used to destroy entities at the end of
your update loop to prevent accidentally
referencing a nonexistent entity.

279Building a WebGL engine

 }
 },
 remove: function(object) {
 var obj;
 for (obj = gd.core.storage.all.length; obj--;) {
 if (gd.core.storage.all[obj].id === object.id) {
 gd.core.storage.all.splice(obj, 1);
 break;
 }
 }

 switch (object.type) {
 case 'a':
 for (obj = gd.core.storage.a.length; obj--;) {
 if (gd.core.storage.a[obj].id === object.id) {
 gd.core.storage.a.splice(obj, 1);
 break;
 }
 }
 break;
 case 'b':
 for (obj = gd.core.storage.b.length; obj--;) {
 if (gd.core.storage.b[obj].id === object.id) {
 gd.core.storage.b.splice(obj, 1);
 break;
 }
 }
 break;
 default:
 break;
 }

 gd.gl.deleteBuffer(object.colorStorage);
 gd.gl.deleteBuffer(object.shapeStorage);
 }
 }
};

STEP 6: CREATE SHAPE ENTITIES WITH 3D DATA

You need to set up an extendable class to create entities that contain 3D data. You’ll

use John Resig’s Simple JavaScript Inheritance script that you added earlier in combi-

nation with a template object. Think of templates as molds for all of your game’s reus-

able visual assets, such as players, enemies, and particles. Add the next listing in a file

right next to core.js called template.js.

var gd = gd || {};

gd.template = {
 Entity: Class.extend({
 type: 0,

 x: 0,
 y: 0,
 z: 0,

Listing 9.7 template.js—Entity default template

JavaScript’s garbage
cleanup is subpar.
You need to
manually purge 3D
data from entities to
prevent your
application from
slowing down.

Core API

Set the collision detection to a string of
“a” = friendly, “b” = enemy, and “0” = passive.
Friends and enemies will collide, but passive
entities won’t during collision detection.

Z-axis makes elements 3D; we’ll
cover this in more detail later.

280 CHAPTER 9 WebGL: 3D application development

 zoom: -80,

 position: function() {
 return [this.x, this.y, this.z + this.zoom];
 },

 width: 0,
 height: 0,

 update: function() {},

 collide: function() {
 this.kill();
 },

 kill: function() {
 gd.core.graveyard.storage.push(this);
 },

 rotate: {
 angle: 0,
 axis: false
 }
 })
};

STEP 7: ADD REUSABLE METHODS THAT SPEED UP PROGRAMMING AND MAKE FILES EASIER

TO MAINTAIN

We know that the previous code doesn’t directly create any 3D graphics, but it makes

working with 3D much easier. Bear with us for one more code snippet, and we’ll cover

WebGL right after.

 Let’s create the last file, game.js, which will have several generic methods to speed

up programming. These methods will slim down your run.js file and make it easier to

maintain. Populate the game.js file in the engine directory with the following listing.

var gd = gd || {};

gd.game = {
 spawn: function(name, params) {
 var entity = new gd.template[name];

 entity.id = gd.core.id.get();

 gd.core.storage.all.push(entity);
 switch (entity.type) {
 case 'a':
 gd.core.storage.a.push(entity);
 break;
 case 'b':
 gd.core.storage.b.push(entity);
 break;
 default:
 break;
 }

Listing 9.8 game.js—Entity helper methods

We’re using
zoom to create

an artificial
camera in

WebGL.
Normally, a
good chunk

of extra
programming is
required, so it’s

kind of a hack
to speed up

programming.

Assembles and
returns a position
in a WebGL
editable format.

update() is always called
before an entity is drawn.

Collisions fire the
kill method.

Send the entity to the
graveyard for deletion
before cp.core.draw()
can run again.

Rotation will be used
later to configure unique
angles for entities.

Core API

gd.game.spawn() will generate any
entity template when given a name
with type String. It’ll also pass any
additional parameters to your init()
method if you declared them.

Pushes the newly created
entity into storage.

281Building a WebGL engine

 if (arguments.length > 1 && entity.init) {
 var args = [].slice.call(arguments, 1);
 entity.init.apply(entity, args);
 } else if (entity.init) {
 entity.init();
 }
 },

 boundaries: function(obj, top, right, bottom, left, offset) {
 if (offset === undefined)
 offset = 0;

 if (obj.x < - this.size.width - offset) {
 return left.call(obj);
 } else if (obj.x > this.size.width + offset) {
 return right.call(obj);
 } else if (obj.y < - this.size.height - offset) {
 return bottom.call(obj);
 } else if (obj.y > this.size.height + offset) {
 return top.call(obj);
 }
 },

 rotate: function(obj) {
 var currentTime = Date.now();
 if (obj.lastUpdate < currentTime) {
 var delta = currentTime - obj.lastUpdate;

 obj.rotate.angle += (30 * delta) / obj.rotate.speed;
 }
 obj.lastUpdate = currentTime;
 },

 random: {
 polarity: function() {
 return Math.random() < 0.5 ? -1 : 1;
 },
 number: function(max, min) {
 return Math.floor(Math.random() * (max - min + 1) + min);
 }
 }
};12

If everything was set up correctly, you can run index.html, and your browser’s console

will only inform you of no errors or that run.js doesn’t exist. If you happened to create

the run.js file earlier, it won’t fire the error shown in figure 9.5.

 Now that your engine’s mechanics are set up, you need to complete it by sending your

object’s 3D data to a user’s graphics card, then displaying the returned information.

1 John Resig blog, “Partial Application in JavaScript,” last updated February 2008, http://mng.bz/6SU0.
2 “Animating objects with WebGL,” Mozilla Developer Network, last updated Aug 7, 2012, http://mng.bz/

O5Z2.

If you added
additional
arguments to
init(), they’ll be
passed in via
the currying
technique of
prefilling
function
arguments.
John Resig blogs
about curring
in JavaScript.1

Allows you to
easily set logic
for leaving the

game’s play
area. You’ll

need to
manually set

the game’s
width and

height later
because 3D

environment
units are

subjective.
Most 3D
engines

allow you
to set

measurements
because

none exist
by default.

Rotation method will
allow you to move an
object around its
center point (originally
taken from Mozilla’s
WebGL tutorial).2

Random number
generation
helpers.

http://mng.bz/6SU0
http://mng.bz/O5Z2
http://mng.bz/O5Z2

282 CHAPTER 9 WebGL: 3D application development

9.2 Communicating with a graphics card

While a war rages on to establish online standards, so does another for computer graph-

ics. OpenGL and Direct X are two heavily competing graphics API libraries for 3D appli-

cations. Although the two have many differences between them, you mainly need to

know that OpenGL is open source and Direct X is proprietary. Because of OpenGL’s

open source nature, support for its internet baby, WebGL, has grown significantly.

NOTE We’re deeply indebted to Mozilla’s WebGL tutorials (https://developer
.mozilla.org/en/WebGL) and Learning WebGL’s lessons (http://learningwebgl
.com) for the code you’ll be using in this section. Thanks, Mozilla and WebGL!

OpenGL is a cross-platform library for Mac OS X, Unix/Linux, and Windows. It allows

for graphics hardware control at a low level. WebGL is based on OpenGL ES (OpenGL

for Embedded Systems), which is a subset of OpenGL for mobile devices. Although

WebGL’s ability to render 3D data via browser seems great, it’s also violating the inter-

net’s security model of not letting web pages access hardware. The good news,

though, is that browsers integrate extra security features to “hopefully” prevent some-

one from setting your graphics card on fire, stealing graphic memory, and/or launch-

ing DoS attacks (more details at http://www.contextis.com/resources/blog/webgl2/).

We’re going to be optimistic here and assume those things won’t happen.

Let’s start by looking at how WebGL renders data before you see it.

In this section, you’ll learn how

■ WebGL processes data inside a computer

■ To create shader data and store

■ To create and store shape data with buffers

■ To manipulate matrices to output assembled 3D data on a screen

■ To use a few scripts that make writing matrices easier

Figure 9.5 If you load up index.html and take a look at your console, it will display no errors or that

run.js is missing. Know that if you’ve created a run.js file already, it won’t fire the shown error.

Core API

https://developer.mozilla.org/en/WebGL
http://learningwebgl.com
http://www.contextis.com/resources/blog/webgl2/
https://developer.mozilla.org/en/WebGL
http://learningwebgl.com

283Communicating with a graphics card

9.2.1 Graphics cards: a quick primer

Consider the game you’re creating: How will a user’s browser process and display the

3D data for your objects? Take a look at figure 9.6.

 What figure 9.6 shows you is that when sending over the 3D data B for entities to a

graphics card, the data starts as arrays c (computer data) and gets processed by the

GPU (graphics processing unit) into vertex buffers d (more data). During this render-

ing stage, additional information is required to assemble your 3D shapes (such as buf-

fer variables). After processing vertex buffers, the data runs through a vertex shader e
to generate screen positioning and color information. 3D data is then further pro-

cessed by the GPU into triangle segments through the triangle assembler f and then

sent to a rasterizer g that removes unnecessary visual data from shapes, generates pixel

fragments, and smooth’s out color surfaces. Shape data then flows through a fragment

shader h, which outputs color and depth for each pixel. Lastly, everything is drawn

onto a user’s screen by a framebuffer i.

If you need more detailed information on how WebGL processes data, we recommend

reading Opera’s explanation at http://mng.bz/4Lao. Our version is quick and simple,

because we don’t want to put you to sleep.

3D graphics and triangles? I don’t get it.

When you’re learning to create shapes with a 2D surface, you usually create a rect-

angle first. But it isn’t the simplest of shapes, and you can’t easily fit a bunch of tiny

rectangles together to create a person’s face or a ball. On the other hand, tiny trian-

gles can fit together to easily create almost any shape imaginable. For a great over-

view of triangles in 3D programming, see Rene Froeleke’s article “Introduction to 3D

graphics” at http://mng.bz/STHc.

3D Data Graphics Card

Arrays Vertex Buffers Vertex Shader

Rasterizer Fragment Shader FramebufferTriangle Assembler

3D data

Graphics Card

1

2

5 6 7 8

3 4

Figure 9.6 A clean version of the rendering pipeline. Although not a be-all-end-all

explanation, it explains the basic steps WebGL goes through as it processes 3D data from

start to finish.

http:// mng.bz/STHc
http:// mng.bz/4Lao

284 CHAPTER 9 WebGL: 3D application development

MEANWHILE, BACK AT THE ENGINE

Your engine currently doesn’t communicate with a graphics card. To do so, you’ll fol-

low two groups of steps:

Once you’ve completed these tasks, you’ll be ready to program the game.

9.2.2 Creating shaders for 3D data

Before you begin with the Group 1 set of tasks, pick up Jacob Seidelin’s helpful

WebGL Cheat Sheet at http://blog.nihilogic.dk/2009/10/webgl-cheat-sheet.html. It

breaks down all of the methods for WebGL’s context into categories such as shaders,

buffers, and more, which will help as you move through these next few sections.

STEP 1: CREATE AND CONFIGURE COLOR, VERTEX, AND SHAPE SHADERS VIA OPENGL ES

To start up your shaders, gd.core.shader.init() needs to call gd.core.shader.get()

and gd.core.shader.store() to retrieve shading data. In addition, you’ll need to

write a little bit of code in a mystery language—OpenGL ES (see the sidebar on

OpenGL ES for more information)—and place that code in your HTML document.

Add the following listing inside index.html right before your JavaScript files. Note that

if you put it anywhere other than right before your JavaScript files, your game will

probably fail to load.

<script id="shader-vertex" type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;
 attribute vec4 aVertexColor;

 uniform mat4 uMVMatrix;
 uniform mat4 uPMatrix;

Group 1—Creating shaders and buffers Group 2—Working with matrices and drawing shapes

■ Step 1: Create and configure color, vertex,

and shape shaders via OpenGL ES.

■ Step 2: Set up shader retrieval from

the DOM.

■ Step 3: Pull shader data from the DOM.

■ Step 4: Create shape, color, and dimension

buffers for entities.

■ Step 1: Use matrices and buffers to visually output

information.

■ Step 2: Bind and draw shapes.

■ Step 3: Detect overlap and remove entities.

■ Step 4: Add matrix helpers to simplify matrix

interaction.

■ Step 5: Add Vlad Vukićević’s WebGL helpers

for rotation.

WHAT ARE SHADERS AGAIN?

We’re throwing “shaders” around like it’s a hip word. A long time ago it may have

meant shading in shapes with color, but now it means much more than that. Today’s

shaders program the GPU for transformations, pixel shading, and special effects

such as lighting.

Listing 9.9 index.html—Color, vertex, and shape shaders

Core API

Configuration for position
and color in your shaders.

Uniform declares this is a constant variable,
and mat4 references a 4-by-4 float matrix.

http://blog.nihilogic.dk/2009/10/webgl-cheat-sheet.html

285Communicating with a graphics card

 varying lowp vec4 vColor;

 void main(void) {
 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
 vColor = aVertexColor;
 }
</script>

<script id="shader-fragment" type="x-shader/x-fragment">

 varying lowp vec4 vColor;

 void main(void) {
 gl_FragColor = vColor;
 }
</script>

STEP 2: SET UP SHADER RETRIEVAL FROM THE DOM

With your shader scripts configured, you need to process them via JavaScript. Replace

gd.core.shader.init() with the following listing in core.js.

gd.core = {
 shader: {
 init: function() {
 this.fragments = this.get('shader-fragment');
 this.vertex = this.get('shader-vertex');

 this.program = gd.gl.createProgram();

 gd.gl.attachShader(this.program, this.vertex);
 gd.gl.attachShader(this.program, this.fragments);
 gd.gl.linkProgram(this.program);

 if (!gd.gl.getProgramParameter(this.program, gd.gl.LINK_STATUS)) {
 return alert("Shaders have FAILED to load.");
 }

 gd.gl.useProgram(this.program);

 this.store();

 gd.gl.deleteShader(this.fragments);
 gd.gl.deleteShader(this.vertex);
 gd.gl.deleteProgram(this.program);
 }
 }
};

OpenGL ES shading language cheat sheet

OpenGL ES is a subset of OpenGL aimed at embedded systems such as mobile

phones, game consoles, and similar devices. The Khronos Group has compiled a

PDF for WebGL that contains a cheat sheet on OpenGL ES Shading Language. It

significantly helps with writing your own custom shader scripts. Pick up your copy

at http://mng.bz/1TA3.

Listing 9.10 core.js—Shader setup

Varying
declares

color data
will vary
over the

surface of a
primitive

shape.

Stores your data inside appropriate variables.

shader-vertex
handles position
and vertex info;
shader-fragment
handles color
assignment.

Pulls shader programs
from the DOM. Notice
that shader-fragment
and shader-vertex
reference the two shader
scripts you wrote.

Creates a
“program” for

your shader (holds
one fragment and

vertex shader). Links your shaders
and newly created
“program” together.

Failsafe in case
shaders crash as
they’re loading.

Stores the
shader

data for
later use.

Clears out leftover shader
data so it doesn’t sit uselessly
in memory. You could delete
these shaders manually by
waiting for JavaScript’s
garbage collector, but this
gives more control.

http:// mng.bz/1TA3

286 CHAPTER 9 WebGL: 3D application development

STEP 3: PULL SHADER DATA FROM THE DOM

In the previous listing, gd.core.shader.init() accesses the shader-vertex and shader-

fragment scripts you put in index.html. gd.core.shader.get()retrieves and pro-

cesses your shader by pulling it from the DOM, sending back a compiled package of

data or an error. gd.core.shader.init() continues processing and attaches your

DOM results to a program. The program sets up vertices, fragments, and color in a

store method. Lastly, all the leftover graphics data is deleted. Replace gd.core.shader

.get() and gd.core.shader.store() with the next listing in core.js to complete load-

ing your shaders.

gd.core = {
 shader: {
 get: function(id) {
 this.script = document.getElementById(id);

 if (!this.script) {
 alert('The requested shader script was not found ' +
 'in the DOM. Make sure that gd.shader.get(id) ' +
 'is properly setup.');
 return null;
 }

 this.source = "";
 this.currentChild = this.script.firstChild;

 while (this.currentChild) {

 if (this.currentChild.nodeType ===

➥ this.currentChild.TEXT_NODE) {
 this.source += this.currentChild.textContent;
 }
 this.currentChild = this.currentChild.nextSibling;
 }

 if (this.script.type === 'x-shader/x-fragment') {
 this.shader = gd.gl.createShader(gd.gl.FRAGMENT_SHADER);
 } else if (this.script.type === 'x-shader/x-vertex') {
 this.shader = gd.gl.createShader(gd.gl.VERTEX_SHADER);
 } else {
 return null;
 }

 gd.gl.shaderSource(this.shader, this.source);
 gd.gl.compileShader(this.shader);

 if (!gd.gl.getShaderParameter(this.shader,

➥ gd.gl.COMPILE_STATUS)) {
 alert('Shader compiling error: ' +
 gd.gl.getShaderInfoLog(this.shader));
 return null;
 }

 return this.shader;
 },

Listing 9.11 core.js—Shader retrieval

No shader script
in the DOM?

Return nothing
and an error.

Returns the compiled
shader data after
being collected via a
while loop.

Tests what kind of
shader is being used
(fragment or vertex)

and processes it
based on the results.

Takes all of your shader data
and compiles it together.

Compile success? If
not, fire an error.

287Communicating with a graphics card

 store: function() {
 this.vertexPositionAttribute =
 gd.gl.getAttribLocation(
 this.program, "aVertexPosition");
 gd.gl.enableVertexAttribArray(this.vertexPositionAttribute);

 this.vertexColorAttribute = gd.gl.getAttribLocation(
 this.program, "aVertexColor");
 gd.gl.enableVertexAttribArray(this.vertexColorAttribute);
 }
 }
};

9.2.3 Creating buffers for shape, color, and dimension

With all that shader data present, you now need to create buffers for shape, color, and

dimension. One interesting fact about buffer data is that each object will have its own

independent set of buffers.

STEP 4: CREATE SHAPE, COLOR, AND DIMENSION BUFFERS FOR ENTITIES

To buffer your data, open template.js and append gd.template.Entity.shape(),

gd.template.Entity.color(), and gd.template.Entity.indices() to the Entity

object with the following listing.

gd.template = {
 Entity: Class.extend({
 shape: function(vertices) {
 this.shapeStorage = gd.gl.createBuffer();
 gd.gl.bindBuffer(gd.gl.ARRAY_BUFFER, this.shapeStorage);
 gd.gl.bufferData(gd.gl.ARRAY_BUFFER,
 new Float32Array(vertices), gd.gl.STATIC_DRAW);

 this.shapeColumns = 3;
 this.shapeRows = vertices.length / this.shapeColumns;
 },

 color: function(vertices) {
 this.colorStorage = gd.gl.createBuffer();

 if (typeof vertices[0] === 'object') {

 var colorNew = [];

 for (var v = 0; v < vertices.length; v++) {
 var colorLine = vertices[v];
 for (var c = 0; c < 4; c++) {
 colorNew = colorNew.concat(colorLine);
 }
 }

 vertices = colorNew;
 }

 gd.gl.bindBuffer(gd.gl.ARRAY_BUFFER, this.colorStorage);
 gd.gl.bufferData(gd.gl.ARRAY_BUFFER,
 new Float32Array(vertices), gd.gl.STATIC_DRAW);

Listing 9.12 template.js—Buffer configuration

Retrieves vertex data
from your shader

program for rendering
3D objects later.

Color data retrieval
from shader program.

Core API

When creating a shape you’ll pass
in vertices, and this method will
take care of everything else.

Creates
buffer
data.Stores created

buffer data so
you can use it.

Uses float32
to change the
array into
a WebGL
editable
format.

At the end of each
method you need to
record information

about the passed
array because your

dependency
sylvester.js requires
extra array details. A helper to

disassemble
large packages
of color data.

288 CHAPTER 9 WebGL: 3D application development

 this.colorColumns = 4;
 this.colorRows = vertices.length / this.colorColumns;
 },

 indices: function(vertices) {
 this.indicesStorage = gd.gl.createBuffer();
 gd.gl.bindBuffer(gd.gl.ELEMENT_ARRAY_BUFFER,
 this.indicesStorage);
 gd.gl.bufferData(gd.gl.ELEMENT_ARRAY_BUFFER,
 new Uint16Array(vertices), gd.gl.STATIC_DRAW);

 this.indicesCount = vertices.length;
 }
 })
};

To use the buffer methods you created, you’ll need to manually call this.shape(),

this.color(), and possibly this.indices() when you create a new entity. More on

how to use these new methods when you program run.js later in this chapter. In order

to output the created buffer data, you’ll need to configure gd.core.draw() next.

9.2.4 Displaying shape data on a screen

Using gd.core.draw(), you’ll loop through all of the current entities in gd.core

.storage.all. For each entity, you’ll use a three-step process that spans three code

listings, which means you need to make sure each of the next three listings continues

from the previous one or the code won’t work. Note also that we’re now working

through the second group of steps.

■ Group 2—Working with matrices and drawing shapes

– Step 1: Use matrices and buffers to visually output information.

– Step 2: Bind and draw shapes.

– Step 3: Detect overlap and remove entities.

– Step 4: Add matrix helpers to simplify matrix interaction.

– Step 5: Add Vlad Vukićević’s WebGL helpers for rotation.

STEP 1: USE MATRICES AND BUFFERS TO VISUALLY OUTPUT INFORMATION

Let’s start step 1 by opening core.js and replacing gd.core.draw() with listing 9.13.

The listing will clear out the canvas’s previous draw data and set the current perspec-

tive to draw all entities currently in storage. For all of the entities, it will run their

update and rotation logic if it’s configured. Be careful with the for loop in this listing,

because it’s continued for two more listings (up to listing 9.15).

gd.core = {
 draw: function() {
 gd.gl.clear(gd.gl.COLOR_BUFFER_BIT | gd.gl.DEPTH_BUFFER_BIT);

 this.perspectiveMatrix = makePerspective(45, this.horizAspect,
 0.1, 300.0);

Listing 9.13 core.js—Drawing shapes

Indices is plural for
index. In WebGL
buffers are used to
assemble triangles
into a single shape.
By using indices
you can define the
location of a pair
of triangles,
instead of just
one at a time.

Core API

Wipes your WebGL viewport clean
to draw a brand-new frame.

Sets the viewing perspective from 1 to 300 units
of distance (prevents aspect ratio distortion).

289Communicating with a graphics card

 for (var i in this.storage.all) {
 this.loadIdentity();

 this.storage.all[i].update();

 this.mvTranslate(this.storage.all[i].position());
 this.mvPushMatrix();

 if (this.storage.all[i].rotate.axis) {
 this.mvRotate(
 this.storage.all[i].rotate.angle,
 this.storage.all[i].rotate.axis);
 }
 }
};3

STEP 2: BIND AND DRAW SHAPES

With the matrix set up properly and rotation applied, you need to output the buffer

information for the current 3D object. Do this by binding 3D data and then outputting

it through gd.gl.vertexAttribPointer(), which passes along bound buffer data.

Use the next listing to continue your gd.core.draw() method.

gd.core = {
 draw: function() {
 gd.gl.bindBuffer(
 gd.gl.ARRAY_BUFFER,
 this.storage.all[i].shapeStorage);
 gd.gl.vertexAttribPointer(
 this.shader.vertexPositionAttribute,
 this.storage.all[i].shapeColumns,
 gd.gl.FLOAT,
 false, 0, 0);

 gd.gl.bindBuffer(
 gd.gl.ARRAY_BUFFER,
 this.storage.all[i].colorStorage);
 gd.gl.vertexAttribPointer(
 this.shader.vertexColorAttribute,
 this.storage.all[i].colorColumns,
 gd.gl.FLOAT,
 false, 0, 0);

 this.setMatrixUniforms();

 if (this.storage.all[i].indicesStorage) {
 gd.gl.drawElements(
 gd.gl.TRIANGLES,
 this.storage.all[i].indicesCount,

3 Weisstein, Eric W., “Identity Matrix,” MathWorld, a Wolfram Web Resource, http://mng.bz/CO1M.

Listing 9.14 core.js—Drawing shapes (continued)

Loops through every entity in storage and
draws it. The for statement doesn’t end in this
listing because it’s continued in the next two.

Resets and creates a matrix that has 1s
diagonally and 0s everywhere else3.

Run the update()
before outputting
shapes to prevent
new entities from
showing up in the
wrong location for

a split second.

Grabs x, y, and z
coordinates from
your entity to
clarify a draw
location and pushes
it into an array.

Standardized method
for pushing the current
matrix item to the top
of the matrix stack.

If rotate data is present,
it will be run here.

Binds ARRAY_BUFFER to
your shapeStorage object.

Defines an array of
generic vertex
attribute data.

Pushes your matrix
data from JavaScript to
WebGL so the shaders
can be properly seen.

Depending on
whether or
not indices

were used, the
buffer data
needs to be

output
differently.

http://mng.bz/CO1M

290 CHAPTER 9 WebGL: 3D application development

 gd.gl.UNSIGNED_SHORT,
 0);
 } else {
 gd.gl.drawArrays(
 gd.gl.TRIANGLE_STRIP,
 0,
 this.storage.all[i].shapeRows);
 }

 this.mvPopMatrix();
 }
};

NOTE We know it’s frustrating that you can’t see 3D models by simply refresh-
ing your browser. Bear with us to output 3D models through the engine’s
draw loop, and we’ll show you the awesome result of what you’ve created.

STEP 3: DETECT OVERLAP AND REMOVE ENTITIES

You’ve completed your output for 3D objects, but you need to append one more

chunk of code to cp.core.draw() with the following listing. It will add optimized col-

lision detection to properly monitor a (friendly) to b (enemy) overlap and clean up

your graveyard.

gd.core = {
 draw: function() {
 if (this.storage.all[i].type === 'a') {
 for (var en = this.storage.b.length; en--;) {
 if (this.overlap(
 this.storage.all[i].x,
 this.storage.all[i].y,
 this.storage.all[i].width,
 this.storage.all[i].height,
 this.storage.b[en].x,
 this.storage.b[en].y,
 this.storage.b[en].width,
 this.storage.b[en].height)) {
 this.storage.all[i].collide(this.storage.b[en]);
 this.storage.b[en].collide(this.storage.all[i]);
 }
 }
 }
 }

 this.graveyard.purge();
 }
};

PROGRESS CHECK!

Now is a good time to check your browser’s console for errors other than run.js being

missing. If so, you’re good to move on to the next section.

Listing 9.15 core.js—Drawing shapes (continued)

Removes an item from the
current matrix stack.

Collision detection
compares a type
and b type entities
to minimize logic.

Closes the for
statement from two
listings back.

Deleted elements are dumped out of the graveyard.
This is accomplished here instead of in the loop to
prevent accidentally referencing a nonexistent entity.

291Communicating with a graphics card

STEP 4: ADD MATRIX HELPERS TO SIMPLIFY MATRIX INTERACTION.

For gd.core.draw() you’d normally have to write some extremely complex logic to

handle matrices for colors and shapes. Instead, you’re going to use some prewritten

helpers for modelview (http://3dengine.org/Modelview_matrix), perspective (http://

mng.bz/VitL), and identity matrices (http://en.wikipedia.org/wiki/Identity_matrix).

Append listing 9.16 to your gd.core object. Like webgl_util.js, the following chunk of

code comes from an unknown source, but you’ll find that Mozilla’s WebGL tutorials,

Learning WebGL, and many other online lessons make use of it.

gd.core = {
 loadIdentity: function() {
 mvMatrix = Matrix.I(4);
 },
 multMatrix: function(m) {
 mvMatrix = mvMatrix.x(m);
 },
 mvTranslate: function(v) {
 this.multMatrix(Matrix.Translation($V([v[0], v[1],
 v[2]])).ensure4x4());
 },
 setMatrixUniforms: function() {
 var pUniform = gd.gl.getUniformLocation(
 this.shader.program, "uPMatrix");
 gd.gl.uniformMatrix4fv(pUniform, false,
 new Float32Array(this.perspectiveMatrix.flatten()));

 var mvUniform = gd.gl.getUniformLocation(
 this.shader.program, "uMVMatrix");
 gd.gl.uniformMatrix4fv(
 mvUniform, false, new Float32Array(mvMatrix.flatten()));
 }
};45

STEP 5: ADD VLAD VUKIĆEVIĆ’S WEBGL HELPERS FOR ROTATION.

The code in listing 9.17 comes from Mozilla’s site at http://mng.bz/BU9f. Mozilla tells

us that “these routines were borrowed from a sample previously written by Vlad

Vukićević,” whose blog you can find at http://blog.vlad1.com. Vlad has created a cou-

ple of tools to help with rotation and with pushing and popping data. Append his

rotation logic to gd.core with the following code.

gd.core = {
 mvMatrixStack: [],

 mvPushMatrix: function(m) {
 if (m) {

Listing 9.16 core.js—Matrix helpers

4 “Matrix multiplication,” Wikipedia, last modified April 8, 2013, http://mng.bz/yo4D.
5 “Translation (geometry),” Wikipedia, last modified Feb. 21, 2013, http://mng.bz/2dbB.

Listing 9.17 core.js—Vlad Vukićević utilities

Core API

Loads up an identity matrix, which
is a series of 1s surrounded by 0s.

Multiplies a matrix4.

Runs matrix multiplication
and then translation5.

Sets the perspective
and model view matrix.

Your stack will be used to manipulate
matrix data with the following methods.

Moves given data to
the top of the stack.

http://3dengine.org/Modelview_matrix
http:// mng.bz/VitL
http://mng.bz/yo4D
http://mng.bz/2dbB
http://en.wikipedia.org/wiki/Identity_matrix
http://mng.bz/BU9f
http://blog.vlad1.com
http:// mng.bz/VitL

292 CHAPTER 9 WebGL: 3D application development

 this.mvMatrixStack.push(m.dup());
 mvMatrix = m.dup();
 } else {
 this.mvMatrixStack.push(mvMatrix.dup());
 }
 },

 mvPopMatrix: function() {
 if (! this.mvMatrixStack.length) {
 throw("Can't pop from an empty matrix stack.");
 }

 mvMatrix = this.mvMatrixStack.pop();
 return mvMatrix;
 },

 mvRotate: function(angle, v) {
 var inRadians = angle * Math.PI / 180.0;

 var m = Matrix.Rotation(inRadians, $V([v[0], v[1],
v[2]])).ensure4x4();

 this.multMatrix(m);
 }
};

PROGRESS CHECK!

Run index.html now and check your browser’s console. You should see the screen

shown in figure 9.7, possibly without the missing-file error. If you get additional errors

or have trouble with your engine’s code as you proceed, you might find it easier and

less frustrating to replace the engine files with chapter 9’s source code instead of

debugging files. Debugging WebGL is a bit of a nightmare because browsers don’t

have easily accessible graphic monitoring tools.

 With the last of the utility helpers in place, you should now feel somewhat comfort-

able with graphics card communication, comfortable enough to write basic 3D output

for a WebGL application at least. Next, we’ll take the foundation you created and use

it to build your interactive 3D game: Geometry Destroyer.

Pop in JavaScript refers to an
array method that removes
the last element from an array
and returns that value to the
caller. Here, mvPopMatrix() is
returning an error or removing
and returning the last item.

This is the method that fires
rotation in cp.core.draw().

Figure 9.7 Your code should output the displayed error of “run.js is missing” or no errors at all when

running index.html. If you have trouble with the engine files as you proceed, just replace them with the

source files from Manning’s website. It’s a nightmare to debug WebGL because of browsers not having

easily accessible graphic monitoring tools.

293Putting it all together: creating Geometry Destroyer

9.3 Putting it all together: creating Geometry Destroyer

Creating 3D shapes is tough, but you just created (or read through as we created) a 3D

engine that will significantly simplify the process. You can create new entities and

attach 3D data via matrices; the engine will take care of outputting all the data for you.

The engine will also take care of cleaning data out of memory whenever you need to.

As you understand how to create entities, you’ll learn about 3D modeling and efficient

OOP programming. If you don’t have any knowledge about creating 3D shapes or

entity management, don’t worry; we’ll guide you along the way.

The work in this section is bundled into three groups of steps:

Let’s dive in to the first group and make your player.

9.3.1 Creating a game interface and control objects

The first thing we’ll focus on is setting up the intro screen’s non-3D logic, the result of

which appears in figure 9.8.

In this section, you’ll build a cool game as you learn to

■ Write a simple matrix to output shape and color in 3D space

■ Create 3D rotation data and use it with a controller to indicate direction in 2D

■ Create and control entity generations for enemies and particles

■ Use indices to turn triangles into squares for easy matrix creation

■ Draw simple 2D shapes in 3D, plus unique polygons and cubes

Prereqs: play the game, grab the code, and test your engine

If you haven’t done so already, head over to http://html5inaction.com/app/ch9/

and play the game. And make sure you pick up the game’s files from http://

www.manning.com/crowther2/ by downloading HTML5 in Action’s source files.

Group 1—Making your player Group 2—Outputting enemies Group 3—Generating particles

■ Step 1: Capture user input.

■ Step 2: Program the

heads-up display.

■ Step 3: Create the 2D

player entity.

■ Step 4: Animate the player

entity.

■ Step 5: Create the player’s

bullets.

■ Step 1: Create a 3D polygon

enemy.

■ Step 2: Create a complex

3D model.

■ Step 3: Generate random

enemy properties.

■ Step 4: Resolve enemy

collisions.

■ Step 5: Spawn enemies in a

controlled manner.

■ Step 1: Create a 3D cube

particle.

■ Step 2: Add color, rotation, and

index data for cubes.

■ Step 3: Add size, type, and

other cube metadata.

■ Step 4: Generate square

particles.

http://html5inaction.com/app/ch9/
http://www.manning.com/crowther2/
http://www.manning.com/crowther2/

294 CHAPTER 9 WebGL: 3D application development

STEP 1: CAPTURE USER INPUT

In your js folder, create and/or open run.js in the text editor of your choice. You

should notice that it’s completely blank. Set up the game’s basic input monitor and

methods by inserting everything into a self-executing function with the following list-

ing in run.js. Make sure to place all code from here on out in this self-executing func-

tion to prevent variables from leaking into the global scope.

(function() {
 gd.core.init(800, 600, function() {
 Ctrl.init();
 Hud.init();
 gd.game.spawn('Player');
 });

 gd.game.size = {
 width: 43,
 height: 32
 };

 var Ctrl = {
 init: function() {
 window.addEventListener('keydown', this.keyDown, true);
 window.addEventListener('keyup', this.keyUp, true);
 },

Listing 9.18 run.js–Initial game setup

Figure 9.8 The first thing you’ll do is set up the intro screen logic. After that,

you’ll create the triangular player between the words Geometry and Destroyer,

which you haven’t seen previously.

Place all code from here on out inside the
self-executing function to prevent variables
from leaking into the global scope.

Declares
width,

height, and
game setup

logic to
fire after

loading
your engine.

The width and height of the play
area in 3D units. Everything is
measured from the middle with a
Cartesian graph, so this is only half
the width and height.

Controller for user input.

295Putting it all together: creating Geometry Destroyer

 keyDown: function(event) {
 switch(event.keyCode) {
 case 38: Ctrl.up = true; break;
 case 40: Ctrl.down = true; break;
 case 37: Ctrl.left = true; break;
 case 39: Ctrl.right = true; break;
 case 88: Ctrl.x = true; break;
 default: break;
 }
 },

 keyUp: function(event) {
 switch(event.keyCode) {
 case 38: Ctrl.up = false; break;
 case 40: Ctrl.down = false; break;
 case 37: Ctrl.left = false; break;
 case 39: Ctrl.right = false; break;
 case 88: Ctrl.x = false; break;
 default: break;
 }
 }
 };
}());

STEP 2: PROGRAM THE HEADS-UP DISPLAY

Controller input is now detectable, and the game engine will launch as expected. But

you still need to create the heads-up display (HUD) to manage score and initial setup.

You also need the player, but let’s start with the HUD by creating a new variable called

Hud below Ctrl with the following listing.

var Hud = {
 init: function() {
 var self = this;

 var callback = function() {
 if (Ctrl.x) {
 window.removeEventListener('keydown', callback, true);
 PolygonGen.init();
 self.el.start.style.display = 'none';
 self.el.title.style.display = 'none';
 }
 };

 window.addEventListener('keydown', callback, true);
 },

 end: function() {
 var self = this;
 this.el.end.style.display = 'block';
 },

 score: {
 count: 0,
 update: function() {

Listing 9.19 run.js—Heads-up display (HUD)

Up arrow.

Down arrow.

Left arrow.
Right arrow.

x keyboard key.

Begins polygon generation
when a players presses X.

Ends the game by displaying
the Game Over screen.

Simple method that increments
and tracks a player’s score.

296 CHAPTER 9 WebGL: 3D application development

 this.count++;
 Hud.el.score.innerHTML = this.count;
 }
 },

 el: {
 score: document.getElementById('count'),
 start: document.getElementById('start'),
 end: document.getElementById('end'),
 title: document.getElementById('title')
 }
};

9.3.2 Creating 2D shapes in 3D

With your HUD and controller built, you can program the player entity, a simple white

triangle that can move when certain keyboard keys are pressed. You’ll also make it

generate bullets whenever a player presses the X key. Figure 9.9 shows the white, trian-

gular player and a single red bullet.

STEP 3: CREATE THE 2D PLAYER ENTITY

Append the next listing after your Hud object to create all of the data required to ini-

tialize your player. Most of the initializing information will be stored in variables at the

top, so you can easily tweak the player’s data in the future.

gd.template.Player = gd.template.Entity.extend({
 type: 'a',
 x: -1.4,
 width: 1,
 height: 1,
 speed: 0.5,
 shoot: true,
 shootDelay: 400,
 rotate: {
 angle: 0,
 axis: [0, 0, 1],
 speed: 3
 },

Listing 9.20 run.js—Player creation

Captures and stores
alterable elements
for easy reference.

Figure 9.9 Displays the player’s ship firing a bullet. Notice that both shapes are 2D

but drawn in a 3D environment.

Core API

Offsets player to line
up nicely with text.

All width and height measurements
are equal to one player unit.

A variable we’ll use to decide how
fast a player’s position increments.

Can be a
value from

0 to 360.
Allows you to only
rotate the player in 2D.

297Putting it all together: creating Geometry Destroyer

 init: function() {
 this.shape([
 0.0, 2.0, 0.0,
 -1.0, -1.0, 0.0,
 1.0, -1.0, 0.0
]);

 this.color([
 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0
]);
 },

 boundaryTop: function() { this.y = gd.game.size.height; },
 boundaryRight: function() { this.x = gd.game.size.width; },
 boundaryBottom: function() { this.y = -gd.game.size.height; },
 boundaryLeft: function() { this.x = -gd.game.size.width; },

 kill: function() {
 this._super();
 PolygonGen.clear();
 Hud.end();
 }
});

3D DRAWING BASICS

The most confusing part of creating players is probably the shape() and color() meth-

ods. The shape() method assembles the triangle in figure 9.10, and the color() method

fills it in with white.

Creates a triangle by plotting and
connecting three different points from the
passed array data. Each line of the array
plots a point in the format of x, y, and z.

Creates a color for each point you
created with the shape method.
Each line of this array outputs a
color as red, green, blue, alpha.

Outputs white
for all three

points you
created with the

shape method.

When the player is destroyed,
the HUD and polygon generator
(set up later) will be shut down.

Core API

Point

Point

Point

Color

x

y

z

Row [0, 2, 0] of your shape matrix creates the top

point of the triangle with x, y, and z coordinates. All

three of your lines create three points for a triangle.

If you’re wondering what the

z is in the x, y, z declaration,

it adds 3D to the Cartesian

graph you’re drawing on.

Color data matrix assists by

coloring the triangle white.

0 2 0

-1 -1 0

1 -1 0

Figure 9.10 Diagram on the left shows a triangle comprising three points from the player’s

matrix data. The right diagram shows a Cartesian coordinate system with x, y, and z.

298 CHAPTER 9 WebGL: 3D application development

The single form of the word vertices is vertex. In math,

a vertex of an angle is an endpoint where two line

segments meet. Declaring three vertices, you created

a triangle, as shown in the previous figure. Adding

one more vertex to the triangle creates the square

shown in figure 9.11, as you probably guessed.

STEP 4: ANIMATE THE PLAYER ENTITY

Getting back to your Player entity, you need to

append an update() method with the following list-

ing to complete it with movement, rotation, and

shooting controls via the keyboard. You’re already

generating keyboard properties from the Ctrl object

you integrated earlier.

gd.template.Player = gd.template.Entity.extend({
 update: function() {
 var self = this;

 if (Ctrl.left) {
 this.rotate.angle += this.rotate.speed;
 } else if (Ctrl.right) {
 this.rotate.angle -= this.rotate.speed;
 }

 if (Ctrl.up) {
 this.x -= Math.sin(this.rotate.angle * Math.PI / 180)
 * this.speed;
 this.y += Math.cos(this.rotate.angle * Math.PI / 180)
 * this.speed;
 } else if (Ctrl.down) {
 this.x += Math.sin(this.rotate.angle * Math.PI / 180)
 * this.speed;
 this.y -= Math.cos(this.rotate.angle * Math.PI / 180)
 * this.speed;
 }

 gd.game.boundaries(this, this.boundaryTop, this.boundaryRight,
 this.boundaryBottom, this.boundaryLeft);

 if (Ctrl.x && this.shoot) {
 gd.game.spawn('Bullet', this.rotate.angle, this.x, this.y);

 this.shoot = false;
 window.setTimeout(function() {
 self.shoot = true;
 }, this.shootDelay);
 }
 }
});

Listing 9.21 run.js—Player update

Line

L
in

e

Vertex

Figure 9.11 Demonstrates where

a vertex is located on a square

Update logic fires every time
a new frame is drawn.

When pushing left or right,
rotation will be triggered
for the player. Rotation is
automatically applied by
the cp.core.draw method
you set up earlier.

Updates
the

player’s
position

using the
current

angle.

Prevents
the player

from going
out of the

game’s
boundaries.

Generates a bullet from
ship’s current location and

moves it at its current angle.

299Putting it all together: creating Geometry Destroyer

PROGRESS CHECK!

At this point, you should be able to move your ship around the page without errors, as

shown in figure 9.12. If you press X on the keyboard, though, your application will

explode because bullets haven’t been configured yet. Let’s fix that.

STEP 5: CREATE THE PLAYER’S BULLETS

Create bullets to shoot by appending the following listing after your Player entity.

Your player will shoot small triangles that destroy enemy entities on collision.

Bullets will spawn at the Player’s position when you pass in parameters through

the init() method.

gd.template.Bullet = gd.template.Entity.extend({
 type: 'a',
 width: 0.6,
 height: 0.6,
 speed: 0.8,
 angle: 0,

 init: function(angle, x, y) {
 this.shape([
 0.0, 0.3, 0.0,
 -0.3, -0.3, 0.3,
 0.3, -0.3, 0.3
]);

 var stack = [];
 for (var line = this.shapeRows; line--;)
 stack.push(1.0, 0.0, 0.0, 1.0);
 this.color(stack);

 this.angle = angle;
 this.x = x;
 this.y = y;
 },

 update: function() {
 gd.game.boundaries(this, this.kill, this.kill, this.kill, this.kill);

Listing 9.22 run.js—Making bullets

Figure 9.12 You should be able to move your player around the screen now. We’ve moved

him from between “Geometry Destroyer” to the upper-left corner. Be warned: You can’t

shoot bullets with X yet.

Angle is used to determine
the movement direction (0
to 360 degrees).

Notice how init() allows the bullet to
spawn at an x and y location and then
move at the player’s current angle.

Alternative method for creating a
color matrix. Useful when creating
a massive number of points that
have the same color value.

300 CHAPTER 9 WebGL: 3D application development

 this.x -= Math.sin(this.angle * Math.PI / 180) * this.speed;
 this.y += Math.cos(this.angle * Math.PI / 180) * this.speed;
 },

 collide: function() {
 this._super();
 Hud.score.update();
 }
});

Armed with bullets, you should be able to run the game and fly your ship around. Try

it out if you’d like. You’ll notice that once you fire a bullet, the game fails because you

haven’t yet created the enemy assets. Let’s create those targets next.

9.3.3 Creating 3D shapes and particles

Enemies in Geometry Destroyer are complex and robust because of their dynamic

color and spawning points. As you can see in figure 9.13, they explode on contact,

shattering into cubes and rectangle particles to create an interesting effect.

Let’s get started with the second group of tasks:

■ Group 2—Outputting enemies

– Step 1: Create a 3D polygon enemy.

– Step 2: Create a complex 3D model.

– Step 3: Generate random enemy properties.

– Step 4: Resolve enemy collisions.

– Step 5: Spawn enemies in a controlled manner.

STEP 1: CREATE A 3D POLYGON ENEMY

Set up the large Polygon first by adding it below gd.template.Bullet with the follow-

ing listing. You’re only going to create its base right now; you’ll configure its 3D data

in the next listing.

gd.template.Polygon = gd.template.Entity.extend({
 type: 'b',

Listing 9.23 run.js—Polygon base

Figure 9.13 Enemies in the game have three major components. First is the large shape

shown on the far left. When destroyed, it spawns the next two components: cubes (middle)

and particles (far right).

301Putting it all together: creating Geometry Destroyer

 width: 7,
 height: 9,

 init: function() {
 this.randomSide();
 this.randomMeta();

 var stack = [];
 for (var v = 0; v < this.shapeRows * this.shapeColumns; v += 3) {

 if (v > 108 || v <= 36) {
 stack.push(this.colorData.pyramid[0],

this.colorData.pyramid[1], this.colorData.pyramid[2], 1);

 } else {
 stack.push(this.colorData.cube[0], this.colorData.cube[1],

this.colorData.cube[2], 1);
 }
 }
 this.color(stack);
 }
});

STEP 2: CREATE A COMPLEX 3D MODEL

You need to add a massive amount of vertex data to finish gd.template.Polygon

.init()from the previous listing. It comprises a pyramid on the top and bottom, with

a cube in the middle. You’ll notice a massive array of data is needed to create the 3D

model. We recommend copying and pasting this from the downloaded source code; if

you don’t have that option, we sincerely apologize. Prepend this.shape() call from

the following listing to the top of gd.template.Polygon.init()’s existing code

from the previous listing.

gd.template.Polygon = gd.template.Entity.extend({
 init: function() {
 this.shape([
 0.0, 7.0, 0.0,
 -4.0, 2.0, 4.0,
 4.0, 2.0, 4.0,

 0.0, 7.0, 0.0,
 4.0, 2.0, 4.0,
 4.0, 2.0, -4.0,

 0.0, 7.0, 0.0,
 4.0, 2.0, -4.0,
 -4.0, 2.0, -4.0,

 0.0, 7.0, 0.0,
 -4.0, 2.0, -4.0,
 -4.0, 2.0, 4.0,

 -4.0, 2.0, 4.0,
 -4.0, -5.0, 4.0,
 -4.0, -5.0, -4.0,

Listing 9.24 run.js—Polygon shape init() prepend

Width is the measurement of the shape’s span of vertices
from left to right, whereas height is top to bottom.

Because you have an insane number of points that
need to be colored, you’ll have to dynamically create

a map of colors instead of writing them by hand.

Tests if a
triangle is

being
drawn

instead of
a square.

Core API

Top pyramid’s front.

Top pyramid’s right.

Top pyramid’s back.

Top pyramid’s left.

Each middle plate section comprises a side of the
polygon’s cubic body. The sections comprised two
triangles drawn together, which creates a square plate.

302 CHAPTER 9 WebGL: 3D application development

 -4.0, 2.0, 4.0,
 -4.0, 2.0, -4.0,
 -4.0, -5.0, -4.0,

 -4.0, 2.0, -4.0,
 -4.0, -5.0, -4.0,
 4.0, -5.0, -4.0,
 -4.0, 2.0, -4.0,
 4.0, 2.0, -4.0,
 4.0, -5.0, -4.0,

 4.0, 2.0, 4.0,
 4.0, 2.0, -4.0,
 4.0, -5.0, -4.0,
 4.0, 2.0, 4.0,
 4.0, -5.0, 4.0,
 4.0, -5.0, -4.0,

 -4.0, 2.0, 4.0,
 4.0, 2.0, 4.0,
 4.0, -5.0, 4.0,
 -4.0, 2.0, 4.0,
 -4.0, -5.0, 4.0,
 4.0, -5.0, 4.0,

 0.0, -10.0, 0.0,
 -4.0, -5.0, 4.0,
 4.0, -5.0, 4.0,

 0.0, -10.0, 0.0,
 4.0, -5.0, 4.0,
 4.0, -5.0, -4.0,

 0.0, -10.0, 0.0,
 4.0, -5.0, -4.0,
 -4.0, -5.0, -4.0,

 0.0, -10.0, 0.0,
 -4.0, -5.0, -4.0,
 -4.0, -5.0, 4.0
]);
 }
}:

STEP 3: GENERATE RANDOM ENEMY PROPERTIES

With your polygon’s 3D data built, you need to generate speed, rotation, color, and a

spawning point so it functions properly. Append randomMeta() and cube() methods

to gd.template.Polygon with the next listing.

xgd.template.Polygon = gd.template.Entity.extend({
 randomMeta: function() {
 this.rotate = {
 speed: gd.game.random.number(400, 100),
 axis: [
 gd.game.random.number(10, 1) / 10,

Listing 9.25 run.js—Polygon shape init() prepend

Each middle plate
section comprises a side
of the polygon’s cubic
body. The sections
comprised two triangles
drawn together, which
creates a square plate.

Bottom pyramid
parallels the drawing
format of the top
pyramid, except it’s
drawn pointing down
instead of up.

Responsible for creating
random details about
rotation, speed, and color.

303Putting it all together: creating Geometry Destroyer

 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10
],
 angle: gd.game.random.number(250, 1)
 };

 this.speed = {
 x: gd.game.random.number(10, 4) / 100,
 y: gd.game.random.number(10, 4) / 100
 };

 this.colorData = {
 pyramid: [
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10
],
 cube: [
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10
]
 };
 }
});

STEP 4: RESOLVE ENEMY COLLISIONS

The last step to create the gd.template.Polygon requires you to add methods for

generating shape data from a random side and cube particles when it’s destroyed. You

also need to update logic and collision information. Append your remaining methods

to gd.template.Polygon with the following listing.

gd.template.Polygon = gd.template.Entity.extend({
 randomSide: function() {
 var side = gd.game.random.number(4, 1);

 if (side === 1) {
 this.angle = gd.game.random.number(200, 160);
 var range = gd.game.size.width - this.width;
 this.x = gd.game.random.number(range, -range);
 this.y = gd.game.size.height + this.height;
 } else if (side === 2) {
 this.angle = gd.game.random.number(290, 250);
 var range = gd.game.size.height - this.height;
 this.x = (gd.game.size.width + this.width) * -1;
 this.y = gd.game.random.number(range, -range);
 } else if (side === 3) {
 this.angle = gd.game.random.number(380, 340);
 var range = gd.game.size.width - this.width;
 this.x = gd.game.random.number(range, -range);
 this.y = (this.height + gd.game.size.height) * -1;
 } else {
 this.angle = gd.game.random.number(110, 70);

Listing 9.26 run.js—Polygon side, update, and collide

Generates random
color details for
pyramids and cubes.
Data is processed and
arranged by methods
in Polygon.init() you
already created.

Determines from which
side to randomly spawn
a polygon.

304 CHAPTER 9 WebGL: 3D application development

 var range = gd.game.size.height - this.height;
 this.x = gd.game.size.width + this.width;
 this.y = gd.game.random.number(range, -range);
 }
 },

 update: function() {
 gd.game.boundaries(this, this.kill, this.kill, this.kill, this.kill,
 (this.width * 2));

 this.x -= Math.sin(this.angle * Math.PI / 180) * this.speed.x;
 this.y += Math.cos(this.angle * Math.PI / 180) * this.speed.y;

 gd.game.rotate(this);
 },

 collide: function() {
 if (gd.core.storage.all.length < 50) {
 for (var p = 15; p--;) {
 gd.game.spawn('Particle', this.x, this.y);
 }
 }

 var num = gd.game.random.number(2, 4);
 for (var c = num; c--;) {
 gd.game.spawn('Cube', this.x, this.y);
 }

 this.kill();
 }
});

STEP 5: SPAWN ENEMIES IN A CONTROLLED MANNER

Although you now have a class for polygon entities, you’ll need a separate object to

generate them. You can create this with a new object called PolygonGen right below

gd.template.Polygon with the next listing.

var PolygonGen = {
 delay: 7000,
 limit: 9,

 init: function() {

 var self = this;

 this.count = 1;
 gd.game.spawn('Polygon');

 this.create = window.setInterval(function() {
 if (gd.core.storage.b.length < self.limit) {
 if (self.count < 3)
 self.count++;

 for (var c = self.count; c--;) {
 gd.game.spawn('Polygon');
 }
 }

Listing 9.27 run.js—Polygon generator

Uses randomly generated
rotate data to make the
polygon slowly rotate.

Creates a
number of

particles at
the center of a
polygon upon

destruction.
Only occurs if

the storage
isn’t too full

to prevent
hogging

memory.

Generates a random
number of cubes at the
center of a polygon
upon destruction.

Initiates polygon
generation by
creating an interval.

Failsafe to prevent
too many objects
spawning and
potentially
crashing the
browser.

305Putting it all together: creating Geometry Destroyer

 }, self.delay);
 },

 clear: function() {
 window.clearInterval(this.create);
 this.count = 0;
 this.delay = 7000;
 }
};

Polygons will now generate after you press X on a keyboard for the first time. If you

shoot them, they’ll fire an error because the game tries to use nonexistent entity tem-

plates for cubes and particles. You’ll set up those with the next set of tasks:

■ Group 3—Generating particles

– Step 1: Create a 3D cube particle.

– Step 2: Add color, rotation, and index data for cubes.

– Step 3: Add size, type, and other cube metadata.

– Step 4: Generate square particles.

STEP 1: CREATE A 3D CUBE PARTICLE

Create a new gd.template.Cube entity below PolygonGen with this listing.

gd.template.Cube = gd.template.Entity.extend({
 init: function(x, y) {
 this.x = x;
 this.y = y;

 this.meta();

 this.shape([

 -this.s, -this.s, this.s,
 this.s, -this.s, this.s,
 this.s, this.s, this.s,
 -this.s, this.s, this.s,

Issues with requestAnimationFrame() and other timers

Your method in gd.core.animate() that fires requestAnimationFrame() stops run-

ning when a user leaves a tab open in the background, unlike JavaScript’s traditional

timers setInterval() and setTimeout(), which keep on running. This means cou-

pling animation with traditional timers is generally not a good idea, because traditional

timers keep on running in the background. There used to be polyfills that relied on a

frame counter in the draw() loop, but some implementations of requestAnimation-
Frame() still update a frame after a couple seconds when a user navigates away from

a tab. The most bulletproof way to use traditional and nontraditional timers is to build

a custom timer script that checks elapsed time and fires in your draw loop. But this

subject is complicated, and we don’t have the time to cover it here. Instead, we’ve given

the polygonGen object a limit to how many enemies it can spawn for a quick patch.

Listing 9.28 run.js—Cube shape

Shuts down
polygon
generation.

Core API

Sets position for x and y with the
parameters passed at spawn.

Our shape declaration is using a much
more efficient method than our polygon
to create rectangles by using four points
instead of six. The catch is we need to
provide a set of indices.

Front plate; this.s is a
reference to a random
size generated later in

gd.template.Cube.meta().

306 CHAPTER 9 WebGL: 3D application development

 -this.s, -this.s, -this.s,
 -this.s, this.s, -this.s,
 this.s, this.s, -this.s,
 this.s, -this.s, -this.s,

 -this.s, this.s, -this.s,
 -this.s, this.s, this.s,
 this.s, this.s, this.s,
 this.s, this.s, -this.s,

 -this.s, -this.s, -this.s,
 this.s, -this.s, -this.s,
 this.s, -this.s, this.s,
 -this.s, -this.s, this.s,

 this.s, -this.s, -this.s,
 this.s, this.s, -this.s,
 this.s, this.s, this.s,
 this.s, -this.s, this.s,

 -this.s, -this.s, -this.s,
 -this.s, -this.s, this.s,
 -this.s, this.s, this.s,
 -this.s, this.s, -this.s
]);
 }
});

STEP 2: ADD COLOR, ROTATION, AND INDEX DATA FOR CUBES

You now need to append the gd.template.Cube.init() method with color, rota-

tion, and indices data from the next listing. If you’re wondering what indices are,

they allow you to draw the sides of a square with four points. Normally, a square’s

side requires six points to create two triangles—this cuts down on code and makes it

easier to maintain.

gd.template.Cube = gd.template.Entity.extend({
 init: function(x, y) {
 this.indices([
 0, 1, 2, 0, 2, 3,
 4, 5, 6, 4, 6, 7,
 8, 9, 10, 8, 10, 11,
 12, 13, 14, 12, 14, 15,
 16, 17, 18, 16, 18, 19,
 20, 21, 22, 20, 22, 23
]);

 this.color([
 [1, 0, 0, 1],
 [0, 1, 0, 1],
 [0, 0, 1, 1],
 [1, 1, 0, 1],
 [1, 0, 1, 1],
 [0, 1, 1, 1]
]);

Listing 9.29 run.js—Cube indices and color

Back plate.

Top plate.

Bottom plate.

Right plate.

Left plate.

Each row of indices assembles
the shape coordinates of two
triangles into a plate. Each
number here represents an
index to an indice, not x, y, z
coordinates.

We’re passing an array of
indices for the colors; you
previously set up the color
method in your template.js
file to output large amounts
of color data for indices.

307Putting it all together: creating Geometry Destroyer

 if (this.rotate)
 this.rotate = {
 axis: [
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10,
 gd.game.random.number(10, 1) / 10],
 angle: gd.game.random.number(350, 1),
 speed: gd.game.random.number(400, 200)
 };
 }
});

STEP 3: ADD SIZE, TYPE, AND OTHER CUBE METADATA

Before gd.template.Cube is complete, you need to add metadata, such as size, type,

and other details. Append the following listing to your existing Cube object.

gd.template.Cube = gd.template.Entity.extend({
 type: 'b',
 size: {
 max: 3,
 min: 2,
 divider: 1
 },
 pressure: 50,

 meta: function() {
 this.speed = {
 x: (gd.game.random.number(this.pressure, 1) / 100)
 * gd.game.random.polarity(),
 y: (gd.game.random.number(this.pressure, 1) / 100)
 * gd.game.random.polarity()
 };

 this.angle = gd.game.random.number(360, 1);

 this.s = gd.game.random.number(this.size.max, this.size.min)
 / this.size.divider;
 this.width = this.s * 2;
 this.height = this.s * 2;
 },

 update: function() {
 gd.game.boundaries(this, this.kill, this.kill, this.kill,
 this.kill, this.width);

 this.x -= Math.sin(this.angle * Math.PI / 180) * this.speed.x;
 this.y += Math.cos(this.angle * Math.PI / 180) * this.speed.y;

 if (this.rotate)
 gd.game.rotate(this);
 }
});

Listing 9.30 run.js—Cube metadata

You’ll use a size object and the meta
method to randomly generate a cube’s size.
This makes size changes easy for when you
extend this entity for particles later.

Pressure will be used to generate
how much speed a cube has after
exploding out of a polygon.

308 CHAPTER 9 WebGL: 3D application development

STEP 4: GENERATE SQUARE PARTICLES

Finish your game by adding gd.template.Particle right after gd.template.Cube

with the following listing. For awesome special effects, you can turn up the number of

particles and turn off the particle limiter in Polygon.collide(). Keep in mind that

generating lots of particles can cause memory issues and frame-rate drops.

gd.template.Particle = gd.template.Cube.extend({
 pressure: 20,
 type: 0,
 size: {
 min: 2,
 max: 6,
 divider: 10
 },

 init: function(x, y) {
 this.x = x;
 this.y = y;

 this.meta();

 this.shape([
 this.s, this.s, 0.0,
 -this.s, this.s, 0.0,
 this.s, -this.s, 0.0,
 -this.s, -this.s, 0.0
]);

 var r = gd.game.random.number(10, 0) / 10,
 g = gd.game.random.number(10, 0) / 10,
 b = gd.game.random.number(10, 0) / 10;
 this.color([
 r, g, b, 1,
 r, g, b, 1,
 r, g, b, 1,
 r, g, b, 1
]);

 var self = this;
 this.create = window.setTimeout(function() {
 self.kill();
 }, 5000);
 }
});

Boot up the completed application in your browser, and everything should work cor-

rectly. You did it! You created a real 3D game—a basic WebGL engine—and learned

foundational 3D programming concepts at the same time. With these tools, you can

start using WebGL in your JavaScript projects immediately to create logos, illustra-

tions, and more—especially with robust 3D libraries like three.js.

Listing 9.31 run.js—Particle generation

Core API

Extends the cube logic
instead of writing a
new particle entity
from scratch.

Creates a flat
rectangle shape
with four points.

Randomly generates a red,
green, blue color with a
constant alpha level.

Cleans the particle out of
memory after five seconds
to prevent memory hogging.

309Summary

9.4 Summary

The words 3D application evoke thoughts of video games and animation that illuminate

the mind’s eye. Even though you can use WebGL for entertainment purposes, this

function makes up a small percentage of what you can do. Some authors have created

3D simulations for various scenarios, such as walking through architecture and operat-

ing vehicles. Uses for 3D in-browser can also transcend Canvas’s 2D space limitations.

For instance, Bjork’s website (bjork.com) uses 2D shapes in a 3D environment for an

amazing effect (shown in figure 9.14).

 Various websites and companies are investing big money in WebGL. It’s too power-

ful to ignore, and as support improves, it will drastically change how websites and

mobile devices are programmed, mostly because WebGL will eventually give mobile

developers the ability to write one 3D application with graphics acceleration for multi-

ple devices. Therefore, we think it’s important for developers to learn more about it

now by playing with demos and tutorials.

 You’ll also be glad to know that WebGL isn’t the only API that’s evolving the Net;

we’ll talk about several others, such as the Full-Screen, Orientation, and Pointer Lock

APIs in appendix I.

Figure 9.14 Almost every illustration on the bjork.com home page is drawn in a 2D fashion. When

they’re moved, you can tell that all the illustrations are 3D.

